Publications

Title: Efficient Non-Epigenetic Activation of HIV Latency through the T-Cell Receptor Signalosome
Author(s): Joseph Hokello, Adhikarimayum Lakhikumar Sharma and Mudit Tyagi
Year 2020
Publisher: Viruses 2020, 12, 868; doi:10.3390/v12080868
URI: https://publications.kiu.ac.ug/publication-page.php?i=efficient-non-epigenetic-activation-of-hiv-latency-through-the-t-cell-receptor-signalosome
File: PDF
Keywords: HIV; non-epigenetics; transcription factors; latency; reactivation

Human immunodeficiency virus type-1 (HIV-1) can either undergo a lytic pathway to cause productive systemic infections or enter a latent state in which the integrated provirus remains transcriptionally silent for decades. The ability to latently infect T-cells enables HIV-1 to establish persistent infections in resting memory CD4+  T-lymphocytes which become reactivated following the disruption or cessation of intensive drug therapy. The maintenance of viral latency occurs through epigenetic and non-epigenetic mechanisms. Epigenetic mechanisms of HIV latency regulation involve the deacetylation and methylation of histone proteins within nucleosome 1 (nuc-1) at the viral long terminal repeats (LTR) such that the inhibition of histone deacetyltransferase and histone lysine methyltransferase activities, respectively, reactivates HIV from latency. Non-epigenetic mechanisms involve the nuclear restriction of critical cellular transcription factors such as nuclear factor-kappa beta (NF- B) or nuclear factor of activated T-cells (NFAT) which activate transcription from the viral LTR, limiting the nuclear levels of the viral transcription transactivator protein Tat and its cellular co-factor positive transcription elongation factor b (P-TEFb), which together regulate HIV transcriptional elongation. In this article, we review how T-cell receptor (TCR) activation efficiently induces NF- B, NFAT, and activator protein 1 (AP-1) transcription factors through multiple signal pathways and how these factors efficiently regulate HIV LTR transcription through the non-epigenetic mechanism. We further discuss how elongation factor P-TEFb, induced through an extracellular signal-regulated kinase (ERK)-dependent mechanism, regulates HIV transcriptional elongation before new Tat is synthesized and the role of AP-1 in the modulation of HIV transcriptional elongation through functional synergy with NF- B. Furthermore, we discuss how TCR signaling induces critical post-translational modifications of the cyclin-dependent kinase 9 (CDK9) subunit of P-TEFb which enhances interactions between P-TEFb and the viral Tat protein and the resultant enhancement of HIV transcriptional elongation.


KIU

Our Contacts

Kampala International University,
Box 20000, Ggaba Road, Kansanga, Kampala

+(256) 392 001 816
+(256) 752 800 802